Theoretical Investigations of the EPR Parameters of T3+ in Beryl Crystal

Wen-Chen Zheng^{a,c}, Qing Zhou^a, Xiao-Xuan Wu^{a,b,c}, and Yang Mei^a

^a Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China

Reprint requests to W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Z. Naturforsch. 61a, 286 - 288 (2006); received November 23, 2005

The EPR parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) of Ti^{3+} ion at the sixfold coordinated Al^{3+} site with trigonal symmetry in beryl crystal are calculated by the third-order perturbation formulas of $\mathrm{3d}^{1}$ ions in a trigonal octahedron. In the calculations, the crystal-field parameters are obtained by the superposition model, and the impurity-induced local lattice relaxation (which is similar to that found for Fe^{3+} in beryl) is considered. The calculated EPR parameters (and also the optical spectra) are in reasonable agreement with the experimental values.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-Field Theory; Local Lattice Distortion; Ti³⁺; Beryl.

1. Introduction

Beryl ($Be_3Al_2Si_6O_{18}$) crystals, doped with transition metal $(3d^n)$ ions, can have many colours. So they are important in the gem industry and increasingly in the laser industry. Many EPR experiments have been made to study the $3d^n$ ions in beryl crystals [1-7]. In these studies it is found that 3dⁿ ions in beryl often substitute the sixfold coordinated Al³⁺ site with D_3 point symmetry [1-7] (note: in a few cases, $3d^n$ ions, e.g., Ti^{3+} , can occupy the irregular tetrahedral Si^{4+} site [6]). For example, the EPR spectra due to Ti³⁺ (3d¹) substituted in the trigonally distorted Al³⁺ site of beryl were measured by several groups, and the EPR parameters (g factors $g_{\parallel},\ g_{\perp}$ and hyperfine structure constants A_{\parallel} , A_{\perp}) were given [5–7]. These EPR parameters, obtained by different groups, are very similar. Until now, besides a simple and rough analysis based on the first approximation (where only the T_{2g} orbitals and splittings in an octahedral and trigonal field are considered [5]), no satisfactory theoretical explanation related to the local geometry of the Ti³⁺ impurity center in beryl has been given. In this paper we calculate the EPR parameters $g_{\parallel}, g_{\perp}, A_{\parallel}$ and A_{\perp} of Ti³⁺ in beryl crystal from third-order perturbation formulas of the EPR parameters (where the contribution due to the ²E_g orbitals and the covalency reduction effect are included). In the calculations, the crystal-field parameters are calculated by the superposition model and the impurity-induced local lattice relaxation is considered. The results are discussed.

2. Calculation

When ${\rm Ti}^{3+}$ $(3d^1)$ is in an octahedral field, the energy level 2D is split into 2E_g and $^2T_{2g}$ levels. If the octahedron is distorted along the C_3 axis, the energy level 2E_g remains unsplit and the level $^2T_{2g}$ is further split into an orbital doublet 2E_g and an orbital singlet 2A_1 [5,8]. For the studied compressed trigonal octahedron, the ground state is the singlet 2A_1 . Thus, from the method in [8], the third-order perturbation formulas of the EPR parameters g_{\parallel} , g_{\perp} , A_{\parallel} and A_{\perp} for a $3d^1$ ion in a trigonal octahedral site can be written as

$$g_{\parallel} = g_{s} - (g_{s} + k)\zeta^{2}/E_{2}^{2},$$

$$g_{\parallel} = g_{s} - 2k\zeta/E_{2} - 4k\zeta/E_{1} - (g_{s} - 2k)\zeta^{2}/(2E_{2}^{2}),$$

$$A_{\parallel} = P\left[-K + \frac{4}{7} - \frac{1}{7}(g_{\perp} - g_{s})\right],$$

$$A_{\perp} = P\left[-K - \frac{2}{7} + \frac{15}{14}(g_{\perp} - g_{s})\right],$$
(1)

0932-0784 / 06 / 0500-0286 \$ 06.00 © 2006 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

b Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, People's Republic of China

^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

	8	g_{\perp}	$A_{\parallel}(10^{-4} \text{ cm}^{-1})$	$A_{\perp}(10^{-4} \mathrm{cm}^{-1})$
Calculation	1.987	1.844	0.1	24.7
Calculation [5]	1.987 ± 0.001	1.842 ± 0.002	0.0 ± 0.1	18.0 ± 0.1
Experiment [6]	1.9895 ± 0.001	1.8416 ± 0.001	-2.0 ± 0.5	19.5 ± 0.5

Table 1. The EPR parameters (g factors g_{\parallel} , g_{\perp} and hyperfine structure constants A_{\parallel} , A_{\perp}) for Ti^{3+} at the trigonal octahedral Al^{3+} site in beryl crystal.

where g_s (≈ 2.0023) is the free-electron value, k the orbital reduction factor, ζ and P are, respectively, the spin-orbit coupling parameter and the dipolar hyperfine structure constant in crystals. Considering the covalency reduction effect [9–11], we have $\zeta \approx N^2 \zeta_0$, $P \approx N^2 P_0$, where the covalency reduction factor $N^2 \approx k$ and ζ_0 and P_0 are the corresponding parameters in free state. For a free Ti³⁺ ion we have $\zeta_0 \approx 154$ cm⁻¹ [12] and $P_0 \approx -25.6 \cdot 10^{-4}$ cm⁻¹ [13]. The value of K, the core polarization constant (we take $K \approx 0.6$ here), is close to that (≈ 0.725 [14]) for Ti³⁺ in ZnS crystal. E₁ is the energy difference between the ground state 2A_1 and 2E_g in cubic symmetry, and E₂ is that between 2A_1 and 2E_g ($^2T_{2g}$) caused by a trigonal crystal-field. By diagonalizing the 2×2^2E_g energy matrix we have

$$E_{1} = 5D_{q} + \frac{5}{2}D_{\sigma} + \frac{15}{2}D_{\tau} + \frac{1}{2}\sqrt{Q},$$

$$E_{2} = 5D_{q} + \frac{5}{2}D_{\sigma} + \frac{15}{2}D_{\tau} - \frac{1}{2}\sqrt{Q}$$
(2)

with

$$Q = (10D_q)^2 - \frac{20}{3}D_q(3D_\sigma - 5D_\tau) + (3D_\sigma - 5D_\tau)^2,$$
(3)

in which D_q is the cubic field parameter, and D_{σ} and D_{τ} are the trigonal field parameters.

According to the superposition model [15], for the studied system the trigonal field parameters can be expressed as

$$D_{\sigma} = -\frac{3}{7}\bar{A}_{2}(R)\sum_{i=1}^{2} (3\cos^{2}\theta_{i} - 1),$$

$$D_{\tau} = -\bar{A}_{4}(R)\sum_{i=1}^{2} \left[\frac{1}{7} (35\cos^{4}\theta_{i} - 30\cos^{2}\theta_{i} + 3) + \sqrt{2}\sin^{3}\theta_{i}\cos\theta_{i} \right],$$
(4)

where $\bar{A}_2(R)$ and $\bar{A}_4(R)$ are the intrinsic parameters with the metal-ligand distance R (note: for beryl crystal, $R_1 \approx R_2 \approx R \approx 1.904$ Å [16], where the subscripts 1 and 2 denote the three oxygen ligands in the upper and lower triangles, respectively). For $3d^n$ ions

in an octahedron with cubic approximation, $\bar{A}_4(R) =$ $\frac{3}{4}D_q$ [15, 17], and $\bar{A}_2(R) \approx (9 \sim 12)\bar{A}_4(R)$ obtained for $3d^n$ ions in many crystals [18–20]. We take $\bar{A}_2(R) \approx$ $12\bar{A}_4(R)$. The cubic field parameter D_q is often estimated from the optical spectra, so we estimate D_a of Ti³⁺ in beryl as follows: Considering that Ti³⁺ in both beryl and Al₂O₃ replace the octahedral Al³⁺ sites, and that the average metal-ligand distance R in beryl is slightly smaller than that in Al₂O₃ ($\approx 1.912 \text{ Å}$ [21]), we can reasonably estimate $D_q \approx 1950 \text{ cm}^{-1}$ in beryl:Ti³⁺ from the value of $D_q \approx 1910 \text{ cm}^{-1}$ in $Al_2O_3: Ti^{3+}$ [22]. θ_i is the angle between the R_i and C_3 axis. In pure beryl crystal, $\theta_1^h \approx 55.30^\circ$ and $\theta_2^h \approx$ 59.68° [16]. Since the impurity can induce a local lattice relaxation in the impurity centers in crystals, as in the case of Fe³⁺ in beryl crystal [23], the angle θ_i in the Ti³⁺ center may be different from the corresponding value in the pure beryl crystal. So, θ_i can be assumed as adjustable parameters. To decrease the number of adjustable parameters, we take only θ_2 as adjustable. Thus, in the above formulas, the factors k and θ_2 are unknown. By fitting the calculated EPR parameters to the experimental values, we obtain

$$k \approx 0.918, \quad \theta_2 \approx 56.5^{\circ}.$$
 (5)

Obviously, the local angle is smaller than that in the host crystal. In Table 1 the calculated and experimental EPR parameters are shown.

3. Discussion

The above studies suggest that by considering a suitable local lattice relaxation the EPR parameters $g_{\parallel}, g_{\perp}, A_{\parallel}$ and A_{\perp} for Ti³⁺ at a trigonal octahedral Al³⁺ site of beryl crystal can be reasonably explained (see Table 1) from the third-order perturbation formulas of a 3d ¹ ion in trigonal symmetry. In addition, based on the local lattice distortion, the calculated transition energy E_1 of $^2A_1 \rightarrow ^2E_g(^2D)$ is 20680 cm⁻¹, which agrees with that obtained from the absorption spectrum of Ti ³⁺ at the Al³⁺ site in beryl (\approx 20200 cm⁻¹ [6]). The calculated $E_2 \approx 1960$ cm⁻¹ [note: $E_2 \approx -v$ if the interaction between the irreducible representations $^2E_g(^2D)$ and $^2E_g(^2T_{2g})$ is neglected] is also close to the trigonal

field parameters $v \approx -1780$ and -2564 cm⁻¹ obtained in [6]. So, the impurity-induced local lattice relaxation and the above calculated formulas are reasonable.

The impurity-induced local lattice relaxation (characterized by the decrease in θ_2) of the Ti³⁺ center in beryl is qualitatively consistent with that of the Fe³⁺ center in beryl (in which the angle θ_2 is also smaller than θ_2 in the pure crystal [23]) obtained from the simple superposition model analysis of zero-field splitting b_2^0 [23], but the decrease in angle θ_2 for the Ti³⁺ cen-

- [1] A. Edgar and D. R. Hutton, J. Phys. C 11, 5051 (1978).
- [2] M. Dvir and W. Low, Phys. Rev. 119, 1587 (1960).
- [3] J. C. R. Mittani, S. Watanbe, M. Matsuoka, D. L. Baptista, and F. C. Zawislak, Nucl. Inst. Methods Phys. B 218, 255 (2004).
- [4] D. R. Hutton, F. A. Darmann, and G. J. Troup, Aust. J. Phys. 44, 429 (1991).
- [5] D. R. Hutton, J. R. Pilbrow, G. J. Troup, and J. O. Warne, Aust. J. Phys. 45, 253 (1992).
- [6] V. P. Solntsev and A. M. Yurkin, Cryst. Rep. 45, 128 (2000).
- [7] L. V. Bershov, Zh. Strukt. Khim. 10, 141 (1969).
- [8] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Metal Ions, Oxford University Press, London 1970.
- [9] Z. Y. Yang, C. Rudowicz, and J. Qin, Physica B 318, 188 (2002).
- [10] M. G. Zhao, J. A. Xu, G. R. Bai, and H. S. Xie, Phys. Rev. B 27, 1516 (1983).
- [11] W. C. Zheng, Q. Zhou, X. X. Wu, and Y. Mei, Spectrochim. Acta A 61, 1243 (2005).

ter in beryl is smaller than that for the Fe³⁺ center in beryl ($\theta_2 \approx 55.44^\circ$ [23]). It appears that the local structure in an impurity center is different not only from the host one, but also from impurity to impurity.

Acknowledgements

This project was supported by the CAAC Scientific Research Base of Civil Aviation Flight Technology and Safety.

- [12] J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press, London 1964.
- [13] B. R. McGarvey, J. Phys. Chem. **71**, 51 (1976).
- [14] U. Kaufmann, A. Rauber, and J. Schneider, J. Phys. C 8, L381 (1975).
- [15] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
- [16] B. Morosin, Acta Crystallogr. B 28, 1899 (1972).
- [17] W. L. Yu and M. G. Zhao, Phys. Rev. B 37, 9254 (1988).
- [18] C. Rudowicz and Y. Y. Zhou, J. Magn. Magn. Mater. 111, 153 (1992).
- [19] A. Edgar, J. Phys. C 9, 4304 (1976).
- [20] T. H. Yeom, S. H. Chon, M. L. Du, and M. S. Jang, Phys. Rev. B 53, 3415 (1996).
- [21] D. S. McClure, J. Chem. Phys. 38, 2289 (1963).
- [22] S. Garcia-Revilla, F. Rodriguez, R. Valiente, and M. Pollnau, J. Phys.: Condens. Matter 14, 447 (2002).
- [23] R. Buscher, K. P. Such, and G. Lehmann, Phys. Chem. Mirerals 14, 553 (1987).